Package: SamplingBigData 1.0.0
SamplingBigData: Sampling Methods for Big Data
Select sampling methods for probability samples using large data sets. This includes spatially balanced sampling in multi-dimensional spaces with any prescribed inclusion probabilities. All implementations are written in C with efficient data structures such as k-d trees that easily scale to several million rows on a modern desktop computer.
Authors:
SamplingBigData_1.0.0.tar.gz
SamplingBigData_1.0.0.zip(r-4.5)SamplingBigData_1.0.0.zip(r-4.4)SamplingBigData_1.0.0.zip(r-4.3)
SamplingBigData_1.0.0.tgz(r-4.4-x86_64)SamplingBigData_1.0.0.tgz(r-4.4-arm64)SamplingBigData_1.0.0.tgz(r-4.3-x86_64)SamplingBigData_1.0.0.tgz(r-4.3-arm64)
SamplingBigData_1.0.0.tar.gz(r-4.5-noble)SamplingBigData_1.0.0.tar.gz(r-4.4-noble)
SamplingBigData_1.0.0.tgz(r-4.4-emscripten)SamplingBigData_1.0.0.tgz(r-4.3-emscripten)
SamplingBigData.pdf |SamplingBigData.html✨
SamplingBigData/json (API)
# Install 'SamplingBigData' in R: |
install.packages('SamplingBigData', repos = c('https://jlisic.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jlisic/samplingbigdata/issues
Last updated 6 years agofrom:3b89b9152f. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win-x86_64 | OK | Nov 01 2024 |
R-4.5-linux-x86_64 | OK | Nov 01 2024 |
R-4.4-win-x86_64 | OK | Nov 01 2024 |
R-4.4-mac-x86_64 | OK | Nov 01 2024 |
R-4.4-mac-aarch64 | OK | Nov 01 2024 |
R-4.3-win-x86_64 | OK | Nov 01 2024 |
R-4.3-mac-x86_64 | OK | Nov 01 2024 |
R-4.3-mac-aarch64 | OK | Nov 01 2024 |
Exports:lpm2_kdtreesplit_sample
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Sampling Methods for Big Data | SamplingBigData-package SamplingBigData |
Local Pivotal Method | lpm2_kdtree |
Split Sample | split_sample |